ORTEC® AMETEK

HPGe Detectors at ORTEC/AMETEK

Elaine G. Roth, Ph.D. Director of Detector Technology

5 December 2018

ORTEC Overview

- New Developments
 - Expansion of GEM-C profile detector product line
 - Resolution Profile SP series with LNBC
 - Large diameter GEM-S and GEM-SP detector products
 - Application benefits
 - Mechanical cooling for Customized Solutions
- ORTEC's special detectors
 - Standard and Segmented Clovers
 - Double Sided Ge Strip detectors
 - Special Point Contact
- Low Background
- Summary

ORTEC Overview

ORTEC is an industry leader in the design and manufacture of ionizing radiation detectors, nuclear instrumentation, analysis software, and integrated systems. Our technologies, products, and services are instrumental in materials analysis for radioisotopic content. Key industry segments include nuclear power, nuclear security and materials safeguard, academia and research, environmental management, and health physics.

- Headquarters: Oak Ridge, TN with global sales and service offices
- Employees: 300+ worldwide
- Core focus: Ionizing radiation detection, identification and analysis systems
- Ownership: AMETEK, Inc., a leading global manufacturer of electronic instruments and electromechanical devices with 2017 sales of \$4.5 billion

ORTEC was founded in 1960 by researchers from Oak Ridge National Labs to commercialize charged particle detectors

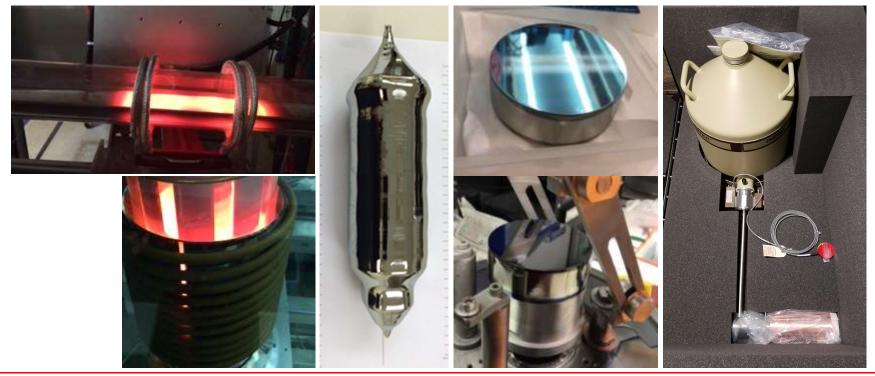
ORTEC Global Footprint

METEK®

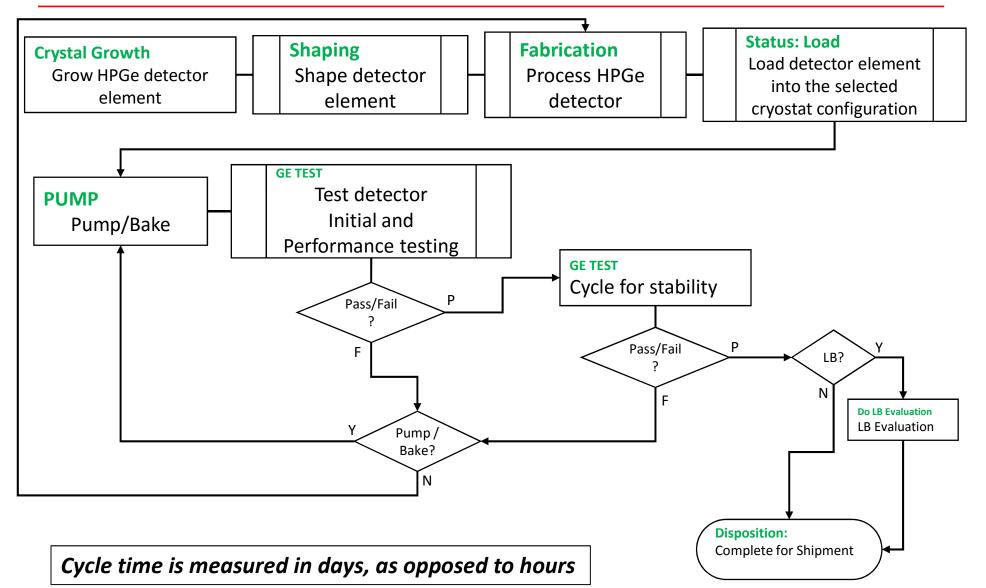
ORTEC Core Competencies

High Purity Germanium Crystal Mfg.

- Purest industrial substance in the world
- ~ 1x10¹⁰ atoms/cc of impurity or better (out of about 1.2x10²³ atoms/cc total)
- Additional silicon and Li6 detectors
- Cryocooling Technologies
 - Vertically intergraded design and manufacturing of Stirling coolers
- Data Acquisition Electronics
 - Highly specialized for nuclear, corrosion and materials analysis
- Analysis Software
 - Comprehensive offerings for integrated hardware control, data analysis, visual display, and reporting
- Integrated System Applications
 - Focused expertise to assess and configure or customize targeted customer solutions



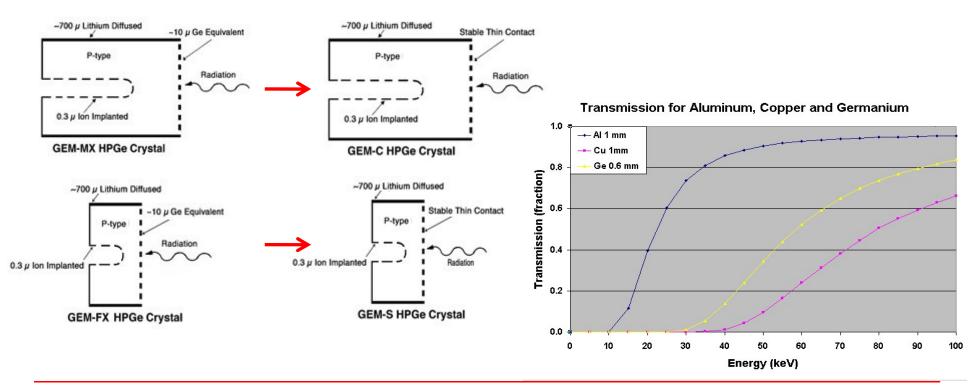
ORTEC HPGe Detector Manufacturing


- Vertically integrated
 - High purity germanium crystal growth
 - HPGe shaping
 - HPGe fabrication
 - Detector assembly and testing
- Special and advanced detector systems design and fabrication
- Technology advancement detector development with 70 + years of experience with radiation detection and cryostat design and cooling

International Workshop on Ge Technology for Fundamental Science/ 5 December 2018

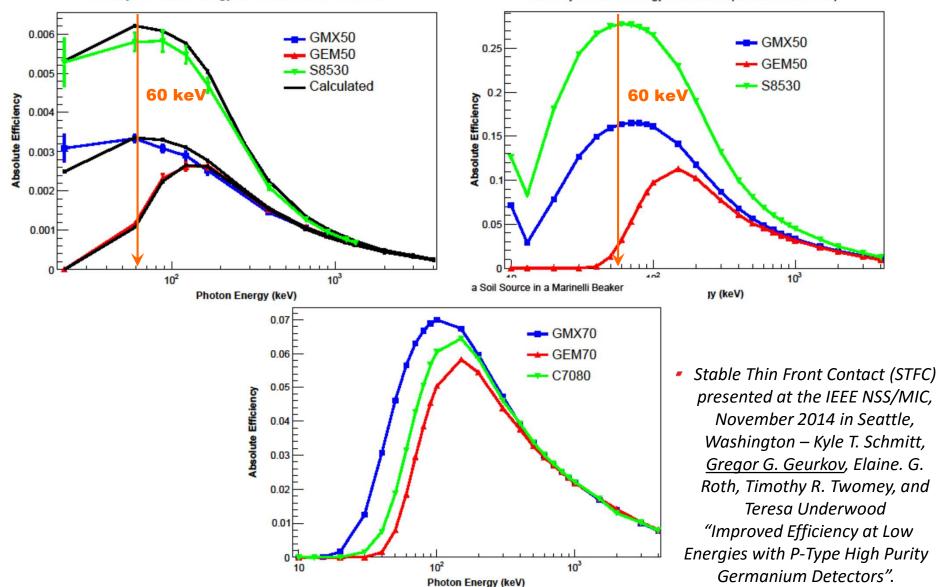
HP Germanium detector production

ORTEC/AMETEK Ge Detectors



- ORTEC Overview
- New Developments
 - Expansion of GEM-C profile detector product line
 - Resolution Profile SP series with LNBC
 - Large diameter GEM-S and GEM-SP detector products
 - Application benefits
 - Mechanical cooling for Customized Solutions
- ORTEC's special detectors
 - Standard and Segmented Clovers
 - Double Sided Ge Strip detectors
 - Special Point Contact
- Low Background
- Summary

Expansion of Profile S and C ORTEC Product Lines **ORTEC**[®]


- <u>Stable Thin Front Contact (STFC) Released in July 2014</u>
- STFC contact for the premium P-type detectors improves low energy (< 100keV) efficiency performance.
- STFC is a stable contact, allowing warm storage of the HPGe detector for prolonged time (months/years) without losing efficiency performance

Efficiencies in 3 Geometries

Efficiency vs Photon Energy for a Point Source at 25 cm

ORTEC[®]

Efficiency vs Photon Energy for a Filter Paper Source on Endcap

International Workshop on Ge Technology for Fundamental Science/ 5 December 2018

Profile C Models and Specs

		Crystal D	limension	Energ	y Resolution (FWHM)	Peak Shap	e		Newingt	
	Profile Model	Actual Diameter (+0/-2 mm)	Actual Length Minimum	5.9 keV Warr. (eV)	122 keV Warr. (eV)	1.33 MeV Warr. (keV)	FW.1M/ FWHM Typical	FW.D2M/ FWHM Typical	P:C Warr.	Nominal Relative Efficiency%	Endcap Dia. (mm)
	GEM-C5060P4	50	60	725	850	1.8	1.9	2.55	60	20	70
C.	GEM-C5970P4	59	70	750	900	1.8	1.9	2.65	62	38	70
-series	GEM-C7080P4	70	80	830	950	1.9	2.0	3.1	75	66	83
les	GEM-C8295P4	82	95	1215	1250	2.1	2.0	3.1	85	115	95
	GEM-C94100P4	94	100	1230	1300	2.3	2.0	3.1	90	175	108

● - performance advantage ● - performance matches competition ● - performance disadvantage over competition

- Expanding from 5 models to 23 models
- Match every efficiency offered in the standard GEM detector product line
- Efficiencies offered: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, and 175%

Advantages in:

- Resolution
- Peak to Compton
- Peak Shape
- Endcap Diameter

Features included:

- Premium resolution performance offered down to 3 keV
- HPGe detector fills the endcap
- Not limited by efficiency

Expanded Profile C Models and Specs

- Released in October 2017 ٠
- 23 models ٠

	Crystal	Dimension	Reso	FWHM/E lution (warra		Pe	eak Shape		Nominal	Endcap
Model No.	Actual Diameter (+2/–2 mm)	Actual Length Minimum	5.9 keV (eV)	122 keV (eV)	1.33 MeV (keV)	FW.1M/ FWHM Typical	FW.02M/ FWHM Typical	P:C Warr.	Relative Efficiency %	Dia. (mm)
GEM-C10	50	25	600	800	1.8	1.9	2.55	41	10	70
GEM-C15	50	44	635	820	1.8	1.9	2.55	46	15	70
GEM-C20	50	60	650	820	1.8	1.9	2.55	60	20	70
GEM-C25	57	50	690	850	1.8	1.9	2.60	56	25	70
GEM-C30	57	62	715	850	1.8	1.9	2.60	60	30	70
GEM-C35	57	75	730	850	1.8	1.9	2.60	62	35	70
GEM-C40	64*	58	760	870	1.8	1.9	2.60	64	40	76
GEM-C45	64*	68	800	900	1.8	1.9	2.60	64	45	76
GEM-C50	68	62	800	900	1.9	1.9	2.60	66	50	83
GEM-C55	68	70	830	1000	1.9	1.9	2.60	67	55	83
GEM-C60	68	77	830	1000	1.9	1.9	2.80	70	60	83
GEM-C65	68	86	830	1000	1.9	1.9	3.00	73	65	83

• - performance advantage • - performance matches competition • - performance disadvantage over competition

Expanded Profile C (cont.)

	Crystal I	Dimension	Resc	FWHM/E plution (warr		Peal	Shape		Nominal	Endcap
Model No.	Actual Diameter (+2/–2 mm)	Actual Length Minimum	5.9 keV 122 keV 1.33 MeV (eV) (eV) (keV)		1.33 MeV (keV)	FW.1M/ FWHM Typical	FW.02M/ FWHM Typical	P:C Warr.	Relative Efficiency %	Dia. (mm)
GEM-C70	70*	85	900	1000	2.0	1.9	3.00	75	70	83
GEM-C75	80	56	900	1000	2.0	1.9	3.00	73	75	95
GEM-C80	80	61	950	1000	2.0	1.9	3.00	73	80	95
GEM-C90	80	70	950	1100	2.0	1.9	3.00	80	90	95
GEM-C100	80	82	1000	1100	2.1	1.9	3.00	83	100	95
GEM-C110	80	91	1050	1100	2.1	1.9	3.00	85	110	95
GEM-C120	82*	98	1050	1100	2.1	1.9	3.00	86	120	95
GEM-C130	92	67	1100	1200	2.1	2.0	3.10	83	130	108
GEM-C140	92	74	1100	1200	2.2	2.0	3.10	83	140	108
GEM-C150	92	81	1100	1300	2.3	2.0	3.10	90	150	108
GEM-C175	94*	100	1100	1300	2.3	2.0	3.10	90	175	108

• - performance advantage • - performance matches competition • - performance disadvantage over competition

(improves peak-to-noise)

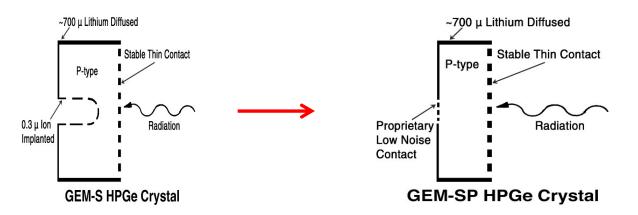
Increased detector efficiency reduces count times

□ Superior energy resolution reduces the background contribution

метек

- New detectors enable researchers to achieve lower MDA:
- Note: B(E) is indirectly proportional to detector resolution

 $MDA(E) \sim \frac{\sqrt{B(E)}}{t \times \varepsilon(E)}$


- $\mathcal{E}(E) = absolute efficiency$
- *E* = gamma energy of interest
- t = counting time
 B(E) = background rate

Minimum Detectable Activity

Profile SP with LNBC

- System resolution $\sqrt{R(d)^2 + R(E)^2}$
- R(d) is the detector resolution and R(E) is the electronic resolution
- To a very good approximation R(d) (in keV) = $1.35\sqrt{E(in MeV)}$
- R(E) depends on the capacitance of the detector and the capacitance depends on the surface area of the contact

- Low Noise Back Contact (LNBC) Released in July 2015
 - Low Noise Back Contact (LNBC) presented at the IEEE NSS/MIC, November 2016 in Strasbourg, France Gregor G. Geurkov, Elaine. G. Roth, Kyle T. Schmitt, and Teresa Underwood "Profile SP (P-type) HPGe detectors – premium resolution at low to medium energies".
- LNBC is a new proprietary contact for P-type detectors that improves low to medium energy (<700 keV) resolution performance

Largest Diameter with Premium FWHM

Gamma Ray Leakage Curve/GEM-SP9430 **Stable Thin Front Contact** 1000 SP9430 Profile 100 30 mm ←Li Li-10 94 mm Low Noise Back Contact 1 To be released 2018 0 500 1000 1500 2000 2500 3000 3500 4000 4500

		Voltage (V)					
@ d	ifferent ener	gies/cooling n	nechanisms			Measured v	with GEM-S
in ୭ eV	FWHM in eV @ 122 keV energy	FWHM in eV @ 5.9 keV	Peak-to- Compton	FW.1M / FWHM	FW.02M / FWHM	Shaping Time	Cooling

ke 133	HM in eV @ 32 keV hergy	FWHM in eV @ 122 keV energy	FWHM in eV @ 5.9 keV energy	Peak-to- Compton	FW.1M / FWHM	FW.02M / FWHM	Shaping Time	Cooling
1	71	564	344	71.1	1.87	2.51	6	Liquid Nitrogen
1	77	593	348	68.0	1.93	2.91	6	Mobius On
	-	557	322	-	-	-	6	Mobius Off
1	66	577	364	72.7	1.85	2.49	10	Liquid Nitrogen

Current (pA)

FWHM

ORTEC[®]

SP9430

Profile SP9430 Competition

Base	Crystal Dimension		Warranted Full Width Half Max resolution (in eV) at			Peak	Shape	Peak to	Nominal	Endcap
Detector Model	Diameter (+0/-2 mm)	Minimum Thickness (mm)	5.9 keV	122 keV	1332 keV	FW.1M/ FWHM	FW.02M/ FWHM	Compton warranted	Relative Efficiency (%)	Diameter (mm)
GEM-SP9430	94	30	425	630	1900	2.00	2.90	65	65	108
GEM-S9430	94	30	500	700	1900	2.00	2.90	65	65	108
Model "B"	90	30	500	750	2000	N/A	N/A	N/A	60	114

Greater efficiency, higher throughput

Better resolution at higher energies

Competitive Comparison

Profile S favorable...

Profile SP ideal...

- Premium resolution and efficiency
- Better resolution at lower energies

Sample Result from an order

Smaller endcap

•

Smaller endcap

Base	Crystal Dimension		Warranted Full Width Half Max resolution (in eV) at			Peak Shape		Peak to	Nominal	Endcap	
Detector Model	Diameter (+0/-2 mm)	Minimum Thickness (mm)	5.9 keV	122 keV	1332 keV		FW.02M/ FWHM	Compton warranted	Relative Efficiency (%)	Diameter (mm)	
Smp/GEM-SP	94	30	346	579	1740	1.90	2.71	70	67.3	108	
GEM-SP9430	94	30	425	630	1900	2.00	2.90	65	65	108	
Smp/GEM-S	94	30	418	614	1740	1.88	2.64	71	72.3	108	
GEM-S9430	94	30	500	700	1900	2.00	2.90	65	65	108	

International Workshop on Ge Technology for Fundamental Science/ 5 December 2018

Profile SP Detector Models and Specs

			ystal ension	Energy Resolution (FWHM)			Peak Shape			Nominal	
	Profile Model	Actual Diameter (+0/–2 mm)	Actual Length Minimum	5.9 keV Warr. (eV)	@122 keV Warr. (eV)	@1.33 MeV Warr. (keV)	FW.1M/ FWHM Typical	FW.02M / FWHM Typical	P:C Warr.	Relative Efficiency %	Endcap Dia. (mm)
	GEM-SP5020P4	50	20	300	585	1.8	1.90	2.55	35	7	70
	GEM-SP5825P4	58	25	340	585	1.8	1.90	2.65	35	15	70
-series	GEM-SP7025P4	70	25	380	585	1.8	1.95	2.75	40	20	83
SP-s	GEM-SP8530P4	85	30	400	630	1.9	2.00	2.90	55	50	108
	GEM-SP9430P4	94	30	425	630	1.9	2.00	2.90	65	65	108
	GEM-SP10530P4	105	30	450	630	2.0	2.00	2.90	65	80	121

• - performance advantage • - performance matches competition • - performance disadvantage over competition

Advantages in:

- Resolution
- Peak to Compton
- Peak Shape
- Endcap Diameter

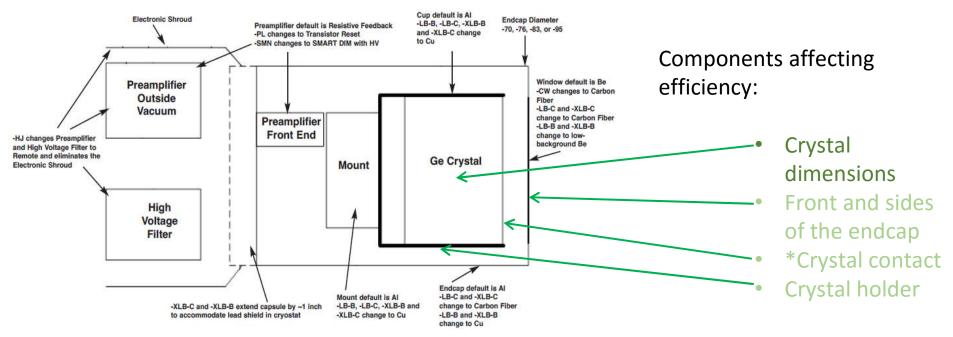
Observations:

• Better resolution and Peak-to-Compton is important in improving MDA performance

Premium resolution specs!

- 15% lower guaranteed resolution at 5.9 keV as compared to Profile S
- 10% lower guaranteed resolution at 122 keV as compared to Profile S
- 13-19% lower guaranteed resolution at 122 keV as compared to competition

Key Drivers

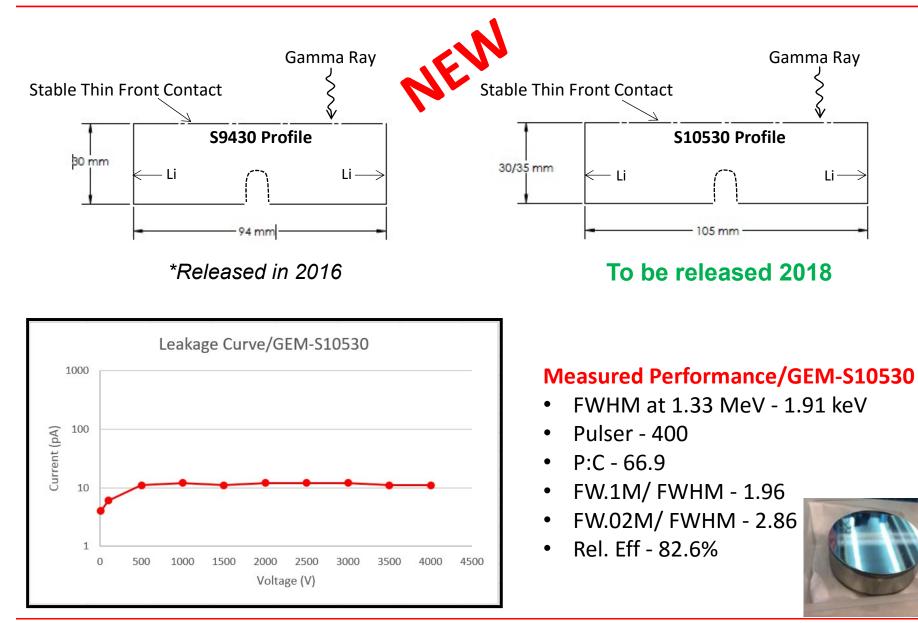

- Maximized counting efficiency
- Nuclide identification over as wide an energy range as possible
- Simple handling and lower storage cost with no loss of detector efficiency

Technology / Product Implementation and Solution

- Semi-planar P-type HPGe detectors
- Crystal diameter maximization within the endcap
- Maximum efficiency and resolution targeting research / health physics / waste assay / LB labs

Detector Efficiency

ORTEC[®]


<u>*Stable Thin Front Contact</u> (STFC) Released in July 2014

Technical paper presented at the IEEE NSS/MIC, November 2016 in Seattle, USA – Gregor G. Geurkov, Elaine. G. Roth, Kyle T. Schmitt, Timothy R. Twomey and Teresa Underwood "Improved Efficiency at Low Energies with P-Type High Purity Germanium Detectors".

- *STFC is a new thin contact for P-type detectors that improves low energy (<40keV) efficiency performance.
- *STFC is a stable contact, allowing warm storage of the HPGe detector for prolonged time (months/years) without losing efficiency performance from the front contact

Largest Diameter Semi-Planar HPGe Detector

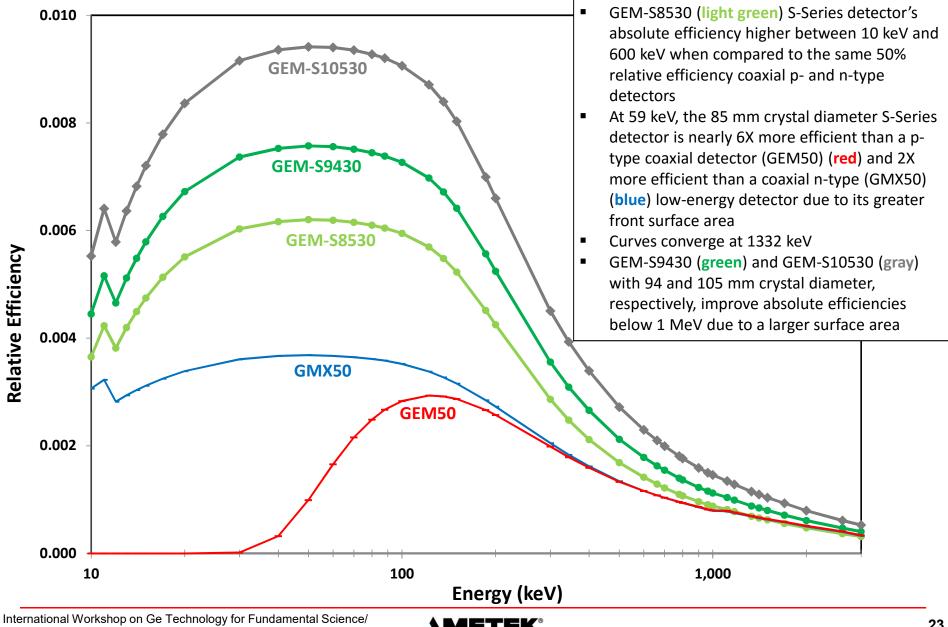
ORTEC[®]

Measure GEM-S10530 Performance/Cooling Methods ORTEC®

FWHM @ different energies/cooling mechanisms

Measured with GEM-S10530

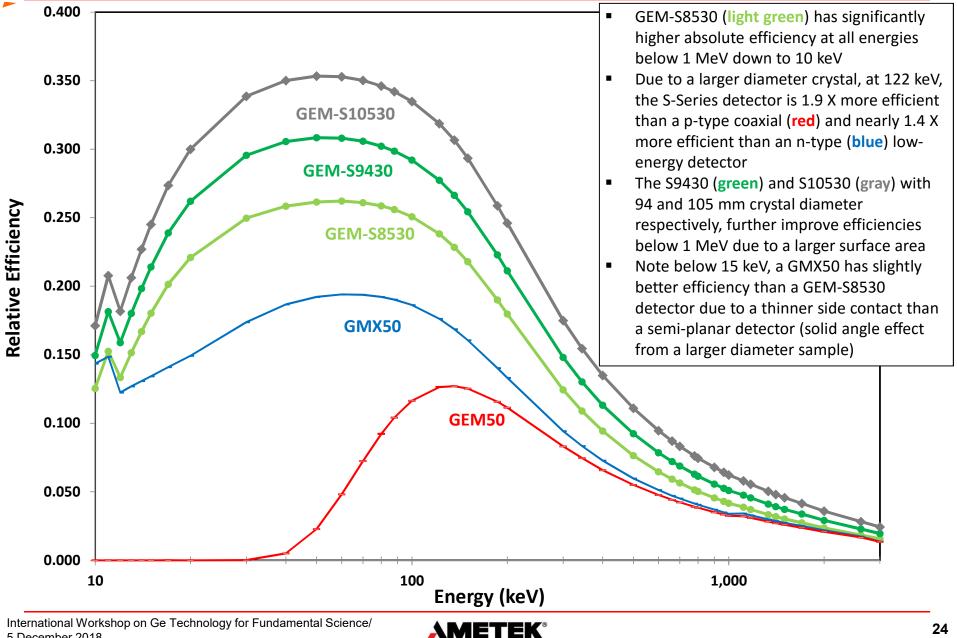
FWHM in keV @ 1332 keV energy	FWHM in eV @ 122 keV energy	FWHM in eV @ 5.9 keV energy	Peak-to- Compton	FW.1M / FWHM	FW.02M / FWHM	Shaping time / Peaking equivalent	Cooling
1.85	597	403	67.5	1.95	2.85	6	Liquid Nitrogen
1.96	620	433	64.3	1.95	2.94	6	X-Cooler
1.87	631	456	66.6	1.96	2.82	6	ICS-P4
1.70	616	442	76.7	1.88	2.55	10	Liquid Nitrogen
1.78	648	469	75.1	1.82	2.45	10	X-Cooler
1.71	656	491	75.4	1.87	2.48	10	ICS-P4
1.65	598	400	76.9	1.91	2.92	12	Liquid Nitrogen
1.72	592	410	74.6	1.87	2.80	20	Liquid Nitrogen
1.68	603	421	75.9	1.90	2.89	20	Mobius On
1.68	598	410	75.5	1.92	2.91	20	Mobius Off


• ____Performance of GEM-S10530 detector in an ORTEC PopTop capsule configuration with a CFG-PV4 cryostat

International Workshop on Ge Technology for Fundamental Science/ 5 December 2018

Efficiencies - Point Source 25cm away

ORTEC[®]



5 December 2018

AMETEK[®]

Efficiencies – 10cm diameter Filter paper

ORTEC[®]

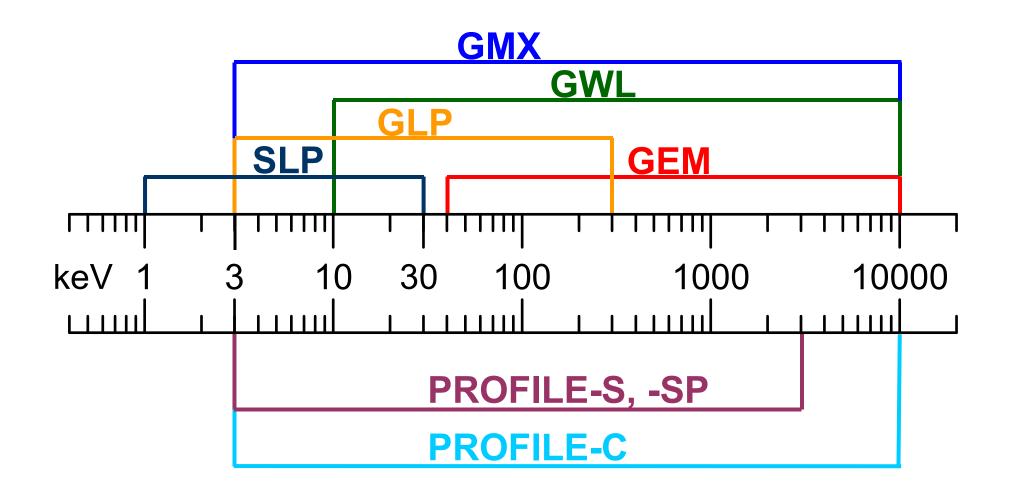
⁵ December 2018

Profile S Detector Models and Specs

			Crystal Dimension		Energy Res (FWH		Peak Shape			Nominal	
F	Profile Model	Actual Diameter (+0/–2 mm)	Actual Length Minimum	5.9 keV Warr. (eV)	Varr. keV Warr. MeV		FW.1M/ FWHM Typical	FW.02M / FWHM Typical	P:C Warr.	Relative Efficiency %	Endcap Dia. (mm)
	GEM-S5020P4	50	20	350	650	1.8	1.90	2.55	35	7	70
	GEM-S5825P4	58	25	400	650	1.8	1.90	2.65	35	15	70
	GEM-S7025P4	70	25	450	650	1.9	1.95	2.75	40	20	83
iries	GEM-S7030P4	70	30	450	700	1.9	2.00	2.90	40	28	83
S-series	GEM-S8530P4	85	30	500	700	1.9	2.00	2.90	55	50	108
	GEM-S9430P4	94	30	500	700	1.9	2.00	2.90	65	65	108
	GEM-S10530P4	105	30	550	700	2.0	2.00	2.90	65	80	121
	GEM-S10535P4	105	35	550	700	2.0	2.00	2.90	65	90	121

• - performance advantage • - performance matches competition • - performance disadvantage over competition

Advantages in:


- Resolution
- Peak to Compton
- Peak Shape
- Endcap Diameter

Observations:

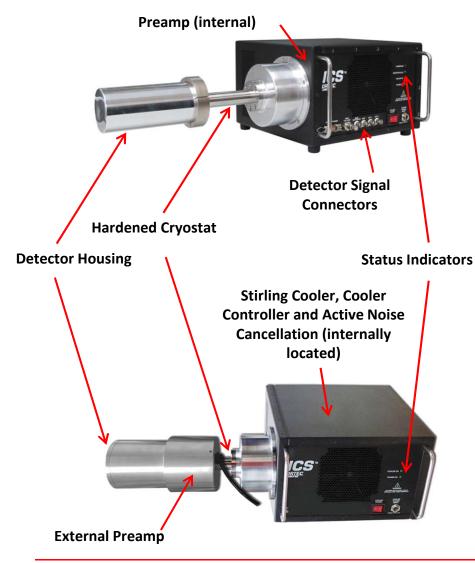
• Better resolution and Peak-to-Compton is important in improving MDA performance

HPGe Types and Energy Ranges

- Premium performance of new detectors confirmed at various shaping/peaking times, both analog and digital
- Large diameter profile detectors produce the best absolute and relative efficiencies from the front of the detector endcap
- Improved detector characteristics result in reduced count time and lower Minimum Detectable Activity
- Superior resolution minimizes peak misidentification and reduces false IDs

Using Liquid Nitrogen as cooling method has significant challenges:

- It is a hazardous material
- It is costly both in terms of man-hours used in filling operations and the actual cost of the LN₂
- Detector performance may be degraded during filling
- It is not always available, thus limiting the applications for HPGe detectors



- ORTEC has been manufacturing mechanical coolers since mid '70s
 - Old generations coolers
 - Solvay (mid 70s) and Joule Thompson (early 90s) technologies
 - Klemenko cycle (X-cooler I,II,III since 2004).
 - New generation coolers
 - Stirling (Detective family since 2004).
 - Stirling (LDM/Mobius/ICS since 2010/2013/2014 correspondingly)
- ORTEC is the only detector manufacturer that is vertically integrated in non-LN₂ cooling
 - ORTEC purchased Sunpower in 2013
 - Stirling coolers are:
 - More efficient than other technologies
 - More reliable (longer MTTF) than other technologies
 - Smaller foot-print (one box design)
 - Same microphonic noise performance as Pulse-Tube
 - Control over quality and cooler developments

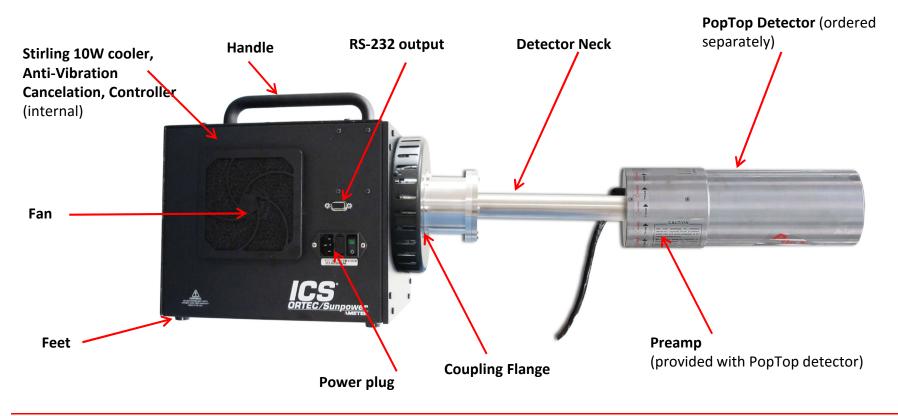
ICS[®] Integrated Cryocooling System

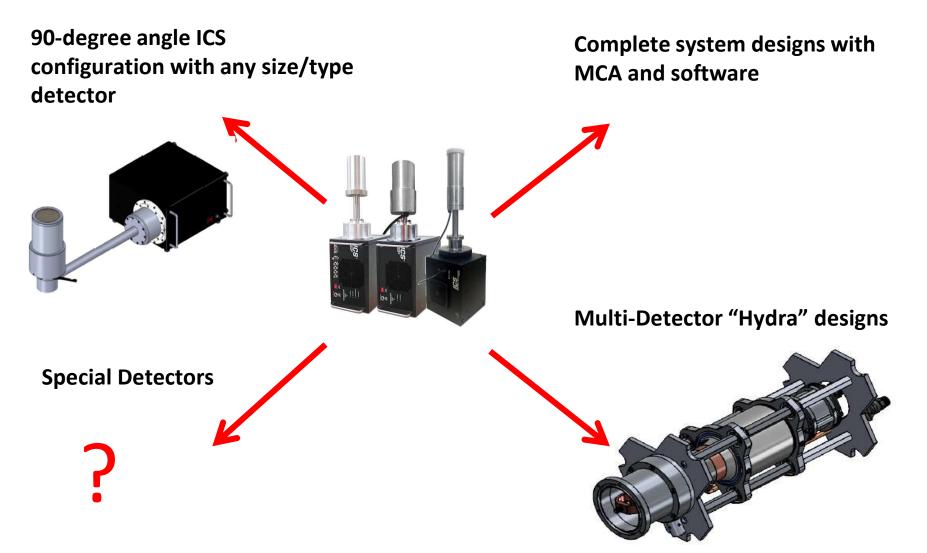
Superior electro-mechanical cooling system for HPGe detectors

Key Drivers

 Premium, LN₂ like resolution performance without using LN₂, with improved operational ease-of-use, application flexibility, and superior system uptime

Technology / Product Implementation and Solution


- Delivers LN₂ like resolution for a variety of HPGe detector models
- Fully integrated Sunpower Stirling cryocooler incorporates Active Vibration Cancellation technology and provides excellent cooler MTTF
- Vacuum hardened cryostat for superior vacuum integrity and no thermal cycling
- Ultra-quite design in a small, compact, single unit footprint provides installation flexibility


Key Differences From Vacuum Hardened version

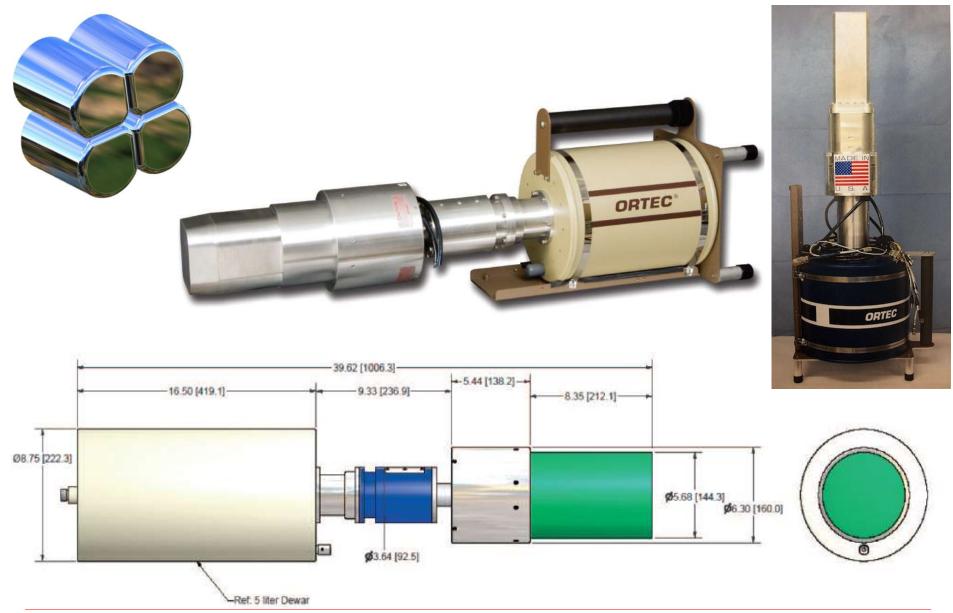
- Conventional cryostat
- Field Upgradable
- Higher power consumption
- Lower weight

Mechanical cooling for Customized Solutions

ORTEC offers unique cooling solutions to meet and design requirements

ORTEC/AMETEK Ge Detectors

- ORTEC Overview
- New Developments
 - Expansion of GEM-C profile detector product line
 - Resolution Profile SP series with LNBC
 - Large diameter GEM-S and GEM-SP detector products
 - Application benefits
 - Mechanical cooling for Customized Solutions
- ORTEC's special detectors
 - Standard and Segmented Clovers
 - Double Sided Ge Strip detectors
 - Special Point Contact
- Low Background
- Summary


Advance Special Detector History

Advance Detector	First Unit built	Number of Units built	Application Examples
Gamma Sphere GaSp	Early 1990s 1990s	110+ 40	Nuclear Physics, beamlines
Clover Detectors	Mid 1990s	20+	Nuclear Physics, Health Physics
Point Contact (coaxial, semi-planar)	2009	50+	Neutrino and Dark Matter, High Resolution Spectrometry, Safeguards
PopTop/Encapsulated	Mid 1980s	Hundreds	Multi-detector (limited space) or multi- orientation, electro-mechanical coolers
Double Sided Strip Detectors	Early 2000	Several	Nuclear physics, Beamlines, Imaging, Medical
Shields, Low Background Hardware	1970s	Hundreds	Low count rate, Underground low background studies
Segmented	2000	Several	Spin Spectroscopy, Tracking, Doppler Shift
Arrays	Early 1990s	Several	Synchrotrons and beamlines, EXAFs

Clover Detector Systems

ORTEC[®]

International Workshop on Ge Technology for Fundamental Science/ 5 December 2018

AMETEK[®]

Point Contact Detector (Majorana Demonstrator)

- 30+ Ge-76 detectors built
 - Manufacturing scheduled
 - Advantageous crystal growth and fabrication yield
- Pulser < 400 eV on average
- FWHM @ 1.33 MeV nominally 1.90 keV on average
- Exposure rate far below calculated acceptance value

Considerations:
 Background exposure

High yield of high-cost Ge-76 material

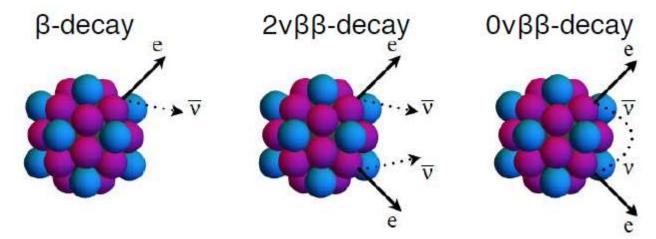
ORTEC Factory Advantages

Vertical manufacturing facility – maintain control in the exposure of material through growth and manufacturing process

Superior resolution and detector yield

Control of cosmic exposure

International Workshop on Ge Technology for Fundamental Science/ 5 December 2018

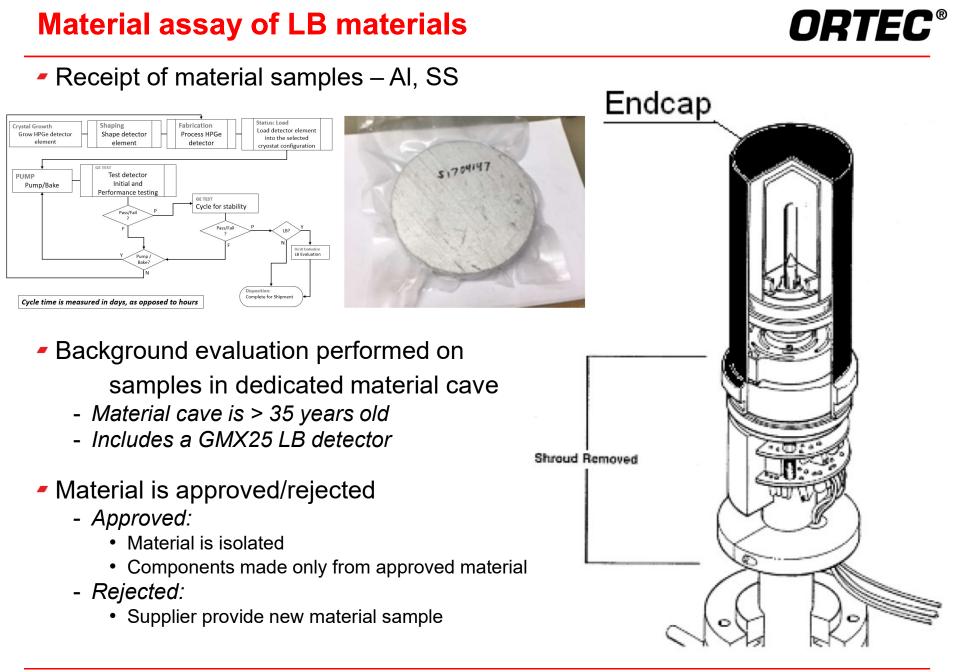


Coaxial Point Contact (Dark Matter)

- Dark Matter experiments require coaxial (larger) crystal geometry and have
 - lower energy (<5keV detection) requirements than Majorana Demonstrator (few MeV)
 - Lower FWHM (pulse) requirement <300eV (Majorana's requirement was FWHM ~400eV for pulser), tested in a standard cryostat
- ORTEC completed a project for low-energy point-contact detectors that resulted in measured performance:
 - FWHM at 1.33 MeV 1.7 keV
 - Pulser 237
 - P:C 75
 - FW.1M/ FWHM 1.88
 - FW.02M/ FWHM 2.56
 - Rel. Eff 56%
 - FWHM at 122 keV 513 eV
 - FWHM at 5.9 keV 273 eV

- Requirement: pulser of 300
- Performance was achieved
- Continued improvements in low energy performance will be realized following the conclusion of ongoing development activities at Oak Ridge

ORTEC/AMETEK Ge Detectors


- ORTEC Overview
- New Developments
 - Expansion of GEM-C profile detector product line
 - Resolution Profile SP series with LNBC
 - Large diameter GEM-S and GEM-SP detector products
 - Application benefits
 - Mechanical cooling for Customized Solutions
- ORTEC's special detectors reminder
 - Standard and Segmented Clovers
 - Double Sided Ge Strip detectors
 - Special Point Contact
- Low Background
- Summary

Key Feature	Application Benefit
Largest P- (up to 200% rel. eff.) or N-type (120+ rel. eff.) HPGe sizes	Decreases count times and increases MDA due to higher efficiency
Low background shielding with low Pb210 content	Minimizes cosmogenic and ambient background
Low background detector hardware (OFHC copper, High Purity Aluminum, CF endcap)	Minimizes MDA emanating from detector subcomponents
Remote preamplifier	Minimizes background from electronics components

- Low background hardware has been available since 1970
- In 2015 ORTEC started a campaign to assay low background components and enhance low background performance capabilities
- Partnerships with low background or underground labs are desired to continue to built premium performance database

Summary

ORTEC[®]

- ORTEC re-ignites focus on special and custom detector market to service Research and Education Community with customized solutions
- Recent developments
 - Segmentation
 - Electro-Mechanical cooling for custom and special systems
 - Largest diameter detectors
- Experts in ionizing radiation detection, identification and analysis instruments and systems
- Broad product portfolio with key focus on detectors, cryocoolers, data acquisition electronics, analysis software and systems integration
- Diverse market applications and balanced sales across all major global geographies
- World-class engineering and manufacturing in the US, with exceptional field sales, support and service facilities worldwide

<u>Contact –</u>

THANK YOU!

- Local sales agent / distributor
- Product Manager Gregor Geurkov (Gregor.Geurkov@ametek.com)
- Director of Detector Technology Elaine Roth (Elaine.Roth@ametek.com)

