Operation and Characterization from Electric Cool Ge Detectors at KSNL

Henry T. Wong (with Vivek Sharma)

Institute of Physics, Academia Sinica, Taiwan

3rd PIRE-GEMADARC Collaboration Meeting (Knoxville, TN) and Ge Technology Workshop

Outline of Talk

- Overview Electro-cooled Ge Detectors.
- Operation & Problems
- Performance: Threshold and background.
- Sensitivity for Low energy physics
- Future Prospects

Design of ECGe

Top View

Side View

Temperature and Power Profile

Advantage of Electro-cool Ge detectors

Customize Coldtip temperature for best frontend performance

Cooling with synchronized negative feedback pumping.

- **V** Less microphonic noise.
- **Compact (Portable) Design.**

✓ New JFET and ASIC FE-electronics near point contact.

Pulsar FWHM and Threshold

	Generation	Mass (g)	Pulsar FWHM (eV _{ee})	Threshold (eV _{ee})
		500	130	500
Liquid	G1			
Nitrogen	G2	900	100	300
Electro-cool	G3	900	70	200
	G3+	1430	~60	~160

Electro-cooler not powerful enough to cool down after some months -- due to outgassing of internal components. **Solution:** Necessary to do regular pump down by an external pump to remove residual air. **Most performing front-end electronics have:** higher background (not yet low-background) compatible) High failure rates

Repairs & Upgrades take long time than "regular" devices, indicating learning curve from company as well

G3+ Generation Detector ..

Data collected with G3 detector: •30 kgd (-190 C)

Encountered problems: •200 eV threshold. •Pulsar FWHM 70 eV. •Controlled background.

G3 Generation Detector

Status to probe vA_{el}

$$\nu + A(Z, N) \rightarrow \nu + A(Z, N)$$

$$\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left[\frac{G_F^2}{4\pi} \right] \left[1 - \frac{q^2}{4E_{\nu}^2} \right] \\ \times \left[\varepsilon Z F_Z(q^2) - N F_N(q^2) \right]$$

THU Ge-activities

Litao Yang (THU)

On behalf of CDEX

The 3rd PIRE-GEMADARC Collaboration Meeting, Dec. 5th, 2018, Knoxville

1

• The manufacture of HPGe

Mechanical Preparation

Lithium Diffusion

Wet Lab

Boron Ion Implant

Surface Passivation

HPGe detector

• New Ion Implanter

✓ Specially designed for HPGe injection, Max. crystal size: Φ100mmX90mm

✓ Injection elements: B, P, Ar

• Laboratory and equipment upgrades

Glove box @ CJPL-I

Fume hood

Glove box @ THU

Water Purifier

- ✓ First assembly test of the home-made HPGe detector in CJPL-I was completed;
- \checkmark A small LN₂ tank was equipped in the glove box@THU, for the test of Bare HPGe in LN_2 ;

• Long-term stability study

- ✓ Detector: 19#
 - ✓ PPCGe detector, Φ50mm X 50mm
 - ✓ Pre-amplifier: Pulse-reset
- ✓ Latest measure results(2018/10/24):
 - ✓ Leakage current: 16pA

✓ FWHM: 0.72keV@122keV, 1.95keV@1.33MeV

Stored at room temperature, cooled down for test, good performance keeping, >1300 days

5

• CMOS Preamplifier ASIC

The schematic of the preamplifier with pulse reset

Drive capability > 10m

Linearity test: INL<0.01%

Layout of ASIC preamplifier 3mm x 3mm

The Readout PCB board

- PCB Material : Rogers 4850
- Tight control on dielectric constant and low loss, close to PTFE
- Utilizing same processing method as standard epoxy/glass (FR4)

• THU-1: ASIC + PPCGe

First 500g home-made PPCGe+ASIC finished testing, energy resolution and energy threshold compared with commercial one.

• THU-1 HPGe Detector Performance @ THU

Noise components analysis: the b-noise is ultra low!

ENC~21.7e 182eV FWHM →152eV FWHM

• THU-1 HPGe Detector Performance @ CJPL

Reset Period ~ 5.7s, Leakage Current ~ 0.043pA.

- ✓ Commercial Ge crystal;
 - Structure machining;
- ✓ Li-drift and B-implanted;
- ✓ Home-made ULB PreAmp;
- ✓ Underground EF-Cu;
- ✓ Underground assemble;
- ✓ Underground testing...

- Vacuum chamber, structure materials, not conducive to further reduce the radioactive background;
- ASIC-based preamplifiers can work well in liquid nitrogen;
- ✓ Develop bare HPGe detectors immersed into LN₂!

CDEX-10 detector string layout

- The leakage current was measured by an electrometer, which also supplied the high voltage at the same time;
- In order to shield infrared radiation, we used a similar design from Gerda.
 A copper sheet is placed above the crystal holder to block infrared radiation from the LN₂ tank, lower the leakage current.

Detector structure of test

Electrometer /high resistance meter

Bare HPGe detectors (with infrared radiation shielding)

The relationship between Leakage Current & Bias Voltage Red: for 3 hours, without infrared radiation shielding Blue: for 0.5 hours, with infrared radiation shielding

Immerse the detector into liquid nitrogen for about 8 hours, we got a stable leakage current ~10 pA for 1000V bias voltage.

• Low background VFE

Flexible Cable

- lower background than coaxial cable
- now: Kapton
- next plan: PTFE (more pure, longer)

The ASIC board with 60cm long Flexible cable

The performances of ASIC Preamplifier with Flexible cable are not degraded. -noise --risetime

Si substrate

(After plating)

- The lowest background circuit substrate material
- Micromachining \rightarrow low mass
- The first version of silicon substrate processing is currently completed

(After plating)

• EFEs in CDEX-1B/10 background data

Detector simulation

Pulses generated by

- ✓ Geant4: interaction & energy deposition;
- <u>ICC package</u>: Induced Charge/Current signal (Shockley-Ramo theorem);

P-type Point-Contact (PPCGe) detector:

- ✓ Small point-like central contact
- Especially low capacitance (~ 1pF) gives superb energy resolution and low energy threshold

Impurity concentration:

- \checkmark [-0.5,-0.8] \times 10¹⁰ cm⁻³
- ✓ no radial gradient
- **Bias Voltage:**

```
✓+ 3000V
```

EFEs origin -- detector simulation

Drift time contour

Drift time distribution

- The very-bulk events mainly arise from the bottom part of the PPC detector
- Very-bulk events discrimination can probably be used for background rejection

700

• EFEs origin -- Experimental verification

¹⁰⁹Cd gamma source

Background spectrum

- ✓ 8 keV X-rays from Copper was observed in EFEs spectrum of the ¹⁰⁹Cd samples;
- In the background spectrum, there are some clear peaks (12-16keV), which are dominated as EFEs;
- Experimentally verified that the ultra-fast case comes from the end face of the point electrode where there is no dead layer.

Nuclide	Туре	Energy(keV)	
Cu	Lα	8.04	
Pb	Lβ 12.62		
Bi	Lβ	13.01	
	Lα	12.85	
Th	Lβ	15.62	
		16.20	
	I a	12.34	
D	Lα	12.20	
ка	Lβ	14.84	
		15.24 18	

• What we learned from EFEs studies? (1)

(1) Suppress the background level

Define the drift time: $t_1 = t_{10\%} - t_{0.1\%}$

- Drift time is related to the energy deposited location;
- Possibility of fiducial selection, remove as much as possible while retaining as much fiducial mass as possible.

• What we learned from EFEs studies? (2)

(2) Improve energy resolution

$$Q_{trapping} = Q_0 \cdot \left[1 - exp\left(-\frac{t_{drift}}{\tau}\right)\right]$$

- ✓ Distribution of t_{drift} -*E* provides information on τ of the carriers;
- ✓ Correct the energy to improve the energy resolution;

Cs-137 calibration data

• What we learned from EFEs studies? (3)

- n+ anode covers the front, lateral and most of the bottom part, which helps to shield the background events;
- Optimization of the ratio of diameter to height, short drift time length and uniform distribution results in better energy resolution.
- BEGe detectors with thick window:
- ✓ a planar p-type detector with a relatively small cathode on the bottom side

(V/cm)

- ✓ relatively small capacitance (a few pF)
- \checkmark smaller EFEs region near the p+ contact

10⁰

Conclusion

- Laboratory and equipment upgrades, the entire assembly processes of HPGe were proceeded well and were well-established;
- ✓ First 500g home-made PPCGe+ASIC with threshold of ~300 eV and visible ⁶⁸Ge X-ray obtained has been achieved;
- ✓ Bare Ge in LN₂ with stable leakage current of ~10 pA under 1K
 Voltage applied is accomplished;
- R&D on low background VFE, Si substrate and flexible cables are intensively studied;
- The study of EFEs can help to better understand the background origins, improve the energy resolution at high energy ranges, optimize detector design on charge collection & bkg reduction.