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Technological capabilities

• eLISA waveband: 10−4 − 10−1

Hz

• eLISA SNR: ∼ 100 times greater

than ground-based detectors

• Observe mergers out to z ∼ 20

What do we expect to observe?
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Compact binary w/ small mass ratio

µ�M

• Massive object: 105M� . M . 109M�

i.e. Supermassive black hole

• Companion: 1 M� . µ . 100 M�

i.e. Stellar-mass BH

• Mass ratio µ/M on the order 10−9 − 10−4

• Systems with 10−4 . µ/M . 10−2 known

as intermediate-mass-ratio inspirals

(IMRIs)

Expected in dense stellar clusters/galactic centers

• Probe the dynamics of these environments

• Help understand astrophysical capturing mechanisms

• Measure spins and masses of supermassive BHs w/ precision ∼ 10−4

• “Map” the structure spacetime surrounding BHs
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e�

	

DeWitt & Brehme (1960): e− in orbit
• At first on a geodesic trajectory

• Over time, e− orbit decays

• Bremsstrahlung-like radiation damping

Does this violate the Equivalence

Principle?
• e− inherently non-local object

• Time-dependent field that extends to

infinity, carries away energy

• Electron interacts w/ its own radiation

field that “scatters” off background

spacetime curvature

Object interacting with its own field

known as self-force or radiation-

reaction

Radiation-reaction due to body’s own

gravitational field ⇒ gravitational

self-force (GSF)
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2

Field Equations Equations of Motion

Gµν = 0 Duα

dτ = 0

∇α∇αh̄µν + 2Rα β
µ ν h̄αβ = −16πTµν µDu

α

dτ = Fα[hµν ]

Second-order field equations

Dh(2)
αβ = Tαβ [hµν ]
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Naive approach: particle still on geodesic

• Write out geodesic equations for full metric gµν + hµν

F
α
grav ≡ µ∇

αµν
hµν

• Force diverges along particle’s trajectory

• Particle does not move on geodesic in gµν + hµν

A cautionary tale – BHPT and the point-particle limit

• Formal treatments: Mino, Sasaki, & Tanaka (1997), Quinn & Wald (1997) ⇒
MiSaTaQuWa formula

• Most rigorous approach Gralla & Wald (2008)

F
α
self ≡ µ∇

αµν
h

(tail/R)
µν
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Consider a scalar field Φ (e.g. electric scalar potential E&M)

∇α∇αΦ
ret

= −4πσ
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Consider a scalar field Φ (e.g. electric scalar potential E&M)

∇α∇αΦ
ret

= −4πσ

Decompose into direct term and tail term =⇒ Φret = Φdirect + Φtail

Detweiler & Whiting (2003) =⇒ Φret = ΦS + ΦR

• ΦS/direct diverge at the source

• ΦR/tail are smooth at the source

• Regularize Φret to find the part of the field that contributes to the self-force

Naturally extends to gravitational case: Φ→ hµν
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Calculate Scalar Self-Force (SSF)
For rigorous treatment of the GSF problem, see van de Meent PRD 94 (2016)
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Schwarzschild (non-spinning) BH

• Circular geodesics

Burko (2000) PRL 84: Mode sum, FD

Diaz-Rivera et al. (2004) PRD 70: Mode

sum, FD

Vega & Detweiler (2008) PRD 77:

Puncture, 1+1D

Vega et al. (2009) PRD 80: Puncture,

3+1D

Dolan & Barack (2011) PRD 83:

Puncture, 2+1D

• Eccentric geodesics

Haas (2007) PRD 75: Mode sum, 1+1D

Kerr (spinning) BH

Circular, equatorial geodesics

• Warburton & Barack (2010) PRD 81:

Mode sum, FD

Eccentric, equatorial geodesics

• Warburton & Barack (2011) PRD 83:

Mode sum, FD

Circular, inclined geodesics

• Warburton (2015) PRD 91: Mode sum,

FD

Eccentric, inclined geodesics

• This work: Mode sum, FD
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FαGSF ≡ q∇αβγhR
βγ

FαSSF ≡ q∇αΦR

Recall definition of GSF:

Definition for SSF:

Solving for the FαSSF

1. Find the background geodesic motion on Kerr of scalar-charged particle

=⇒ source term

2. Solve for the field using Klein-Gordon scalar wave-equation

=⇒ physical, retarded field Φret

3. Φret = ΦR + ΦS

=⇒ regularization scheme
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Background Geodesics on Kerr
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Use Boyer-Lindquist coordinates (t, r, θ, ϕ)

Solving the geodesic equations

• 4 1st-order coupled ODEs

• Depend on Kerr parameters {a,M} & orbital constants {E,Lz, Q}

• Specify {p, e, ι} → {E,Lz, Q} for bound motion

• Given {a,M, p, e, ι}, integrate equations to get background motion z(τ)

• Code uses spectral integration technique

• Developed by Hopper et al (2015) for 200 digit calculations on Schwarzschild

• Motion is periodic, has fundamental frequencies

• Use signal processing theory and integrate functions by properly sampling them

along the orbit

• Worked w/ Thomas Osburn to generalize to Kerr (include bi-periodicity)

• With spectral integration, 100 digits of precision w/ ∼ 500 samples
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Field equation due to scalar charge source

∇a∇αΦ
ret

= −4πσ σ = σ[z(τ)]

Use mode decomposition and separation of variables
• Decompose field and source in frequency domain, then on the basis of spheroidal

harmonics Sl̄mω(θ,−γ2)eimϕ

=⇒
[
d2

dr2
∗

+ Ul̂mkn(r)

]
Xl̂mkn(r) = σ̃l̂mkn(r)

• Solve with Green’s function integration (variation of parameters)

• Obtain the homogeneous radial solutions X±
l̂mkn

(r)

• Inhomogeneous radial solution

Xl̂mkn(r) = c
+

l̂mkn
(r)X

+

l̂mkn
(r) + c

−
l̂mkn

(r)X
−
l̂mkn

(r)

Reconstruct TD solution by summing over the mode space

Computational difficulties: homogeneous solutions, source integration,

Gibbs phenomenon
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Field equation due to scalar charge source

∇a∇αΦ
ret

= −4πσ σ = σ[z(τ)]

Use mode decomposition and separation of variables
• Decompose field and source in frequency domain, then on the basis of spheroidal

harmonics Sl̄mω(θ,−γ2)eimϕ

=⇒
[
d2

dr2
∗

+ Ul̂mkn(r)

]
Xl̂mkn(r) = σ̃l̂mkn(r)

• Solve with Green’s function integration (variation of parameters)

• Obtain the homogeneous radial solutions X±
l̂mkn

(r)

• Inhomogeneous radial solution

Xl̂mkn(r) = c
+

l̂mkn
(r)X

+

l̂mkn
(r) + c

−
l̂mkn

(r)X
−
l̂mkn

(r)

Reconstruct TD solution by summing over the mode space

Computational difficulties: homogeneous solutions, source integration,

Gibbs phenomenon
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Barack, Ori, & Sago (2008) develop method of extended homogeneous
solutions (EHS) to counter Gibbs phenomenon

X̂
±
l̂m

(t, r) =
∑
kn

C
±
l̂mkn

X
±
l̂mkn

(r) e
−iωmknt C

±
l̂mkn

=

∫
fl̂mknσ̃l̂mkndr

• Integrand is bi-periodic ⇒ spectral integration techniques

• Bi-periodic reduces integrand to 4 discrete sums

Computational efficiency of SSI on

Kerr
• a/M = 0.5, e = 0.5, p = 15, ι = π/3

• Calculate C±2222 mode
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Decompose the regular field on basis of spherical harmonics

Φ
R

=
∑
lm

Φ
R
lm(t, r)Ylm(θ, ϕ)

=
∑
lm

[
Φ

ret
lm(t, r)− Φ

S
lm(t, r)

]
Ylm(θ, ϕ)

Barack and Ori (2003): Mode-sum regularization

Mode-sum regularization valid for both GSF and SSF

Parameters analytically known for gravitational and scalar cases on Kerr

F
SSF
α =

∞∑
l=0

[(
F
l(ret)
α

)±
−
(
F
l(S)
α

)±]

=

∞∑
l=0

[(
F
l(ret)
α

)±
− A±αL− Bα − Cα/L

]
−Dα w/ L ≡ l +

1

2
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Fluxes on Kerr
• Gauge invariant quantities calculated by integrating components of the stress-energy at

spatial infinity and the black hole horizon

• Conservation of energy ⇒ radiated energy = work done by SSF

Code and SSI Validation

〈Ė±〉 =
∑
lmkn

fm(ωmkn)|C±lmkn|
2 E → E or Lz

• Reference values in Warburton & Barack (2011):

p = 10, e = 0.2, a/M = −0.5, ι = 0

〈Ė〉tot
= 3.6565609775× 10

−5

〈L̇z〉tot
= 1.06932318967× 10

−3
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Fluxes on Kerr
• Gauge invariant quantities calculated by integrating components of the stress-energy at

spatial infinity and the black hole horizon

• Conservation of energy ⇒ radiated energy = work done by SSF

Code and SSI Validation

〈Ė±〉 =
∑
lmkn

fm(ωmkn)|C±lmkn|
2 E → E or Lz

• Reference values in Warburton & Barack (2011):

p = 10, e = 0.2, a/M = −0.5, ι = 0

〈Ė〉tot
= 3.6565609775× 10

−5

〈L̇z〉tot
= 1.06932318967× 10

−3

|1− 〈Ė〉tot
/〈Ė〉ref| = 6.83703× 10

−10

|1− 〈L̇z〉tot
/〈L̇z〉ref| = 3.13246× 10

−10
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Inclined orbit on Schwarzschild
• Spherical symmetry ⇒ physics should be unaffected by rotations

Equatorial case:
p = 10, e = 0.2, a/M = 0, ι = 0

Inclined case:
p = 10, e = 0.2, a/M = 0, ι = π/3
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Inclined orbit on Schwarzschild
• Spherical symmetry ⇒ physics should be unaffected by rotations

Equatorial case:
p = 10, e = 0.2, a/M = 0, ι = 0

Inclined case:
p = 10, e = 0.2, a/M = 0, ι = π/3

〈Ė〉 should have same value for both cases

〈Ė〉inc = 3.21331398× 10−5

|1− 〈Ė〉inc/〈Ė〉eq| = 2× 10−15
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SSF of eccentric, equatorial orbit on Kerr
• p = 10, e = 0.2, a/M = −0.5, ι = 0
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SSF of eccentric, equatorial orbit on Kerr
• p = 10, e = 0.2, a/M = −0.5, ι = 0

Ft ×M2/q2 Fr ×M2/q2 Fϕ ×M/q2

disp 4.5× 10−5 9.3× 10−6 −2.4× 10−4

cons 2.1× 10−5 3.1× 10−5 −1.3× 10−3

Relative Error with Warburton & Barack (2011)

Ft ×M2/q2 Fr ×M2/q2 Fϕ ×M/q2

disp 3.3× 10−9 7.3× 10−9 4.0× 10−9

cons 2.4× 10−5 2.0× 10−4 5.2× 10−5
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Ft ×M2/q2 Fr ×M2/q2 Fϕ ×M/q2

disp 4.5× 10−5 9.3× 10−6 −2.4× 10−4

cons 2.1× 10−5 3.1× 10−5 −1.3× 10−3

Relative Error with Warburton & Barack (2011)
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SSF over an eccentric, inclined orbit in Schwarzschild limit
Rotate coordinate system from equatorial case

Ft(ι) = F
eq
t Fϕ(ι) = F

eq
ϕ cos ι

Fr(ι) = F
eq
r Fθ(ι) = ±Fϕ(ι)

√
sec2 ι− csc2 θp

Specify orbital parameters p = 10, e = 0.2, a/M = 0, ι = π/3
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Inclined, eccentric orbit on Kerr: p = 50, a/M = 0.5, e = 0.2, ι = π/8
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Inclined, eccentric orbit on Kerr: p = 50, a/M = 0.5, e = 0.2, ι = π/8

Total Energy and Angular Momentum Fluxes

〈Ė〉tot = 5.01080253× 10−8 〈L̇z〉tot = 1.59571235× 10−5

〈Ė−〉 = 1.19847920× 10−8 〈L̇−z 〉 = −2.3897897920× 10−8

〈Ė+〉 = 4.99881774× 10−8 〈L̇+
z 〉 = 1.598102137× 10−5

Cutoff of lmax = 8

⇒ relative accuracy ∼ 8 digits
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LISA to launch in 2034 - promising science

Success of LISA depends on success of theory

Black hole perturbation theory & the gravitational self-force (GSF) are

promising mathematical formalisms for modeling EMRIs

Scalar self-force (SSF) is a powerful toy model

My SSF code
• new spectral source integration techniques

• passes validation tests

• Provides first results of flux calculations on a generic orbit

• SSF calculations are running as we speak
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Black Hole Perturbation Theory (BHPT)

0

1

2

Field Equations Equations of Motion

Gµν ≡ Rµν − 1
2gµνR = 0 Duα

dτ ≡ u
β∇βuα = 0

∇α∇αh̄µν + 2Rα β
µ ν h̄αβ = −16πTµν

µDu
α

dτ = Fα[hµν ]

h̄µν = hµν − 1
2gµνh

α
α & ∇ν h̄µν = 0

Second-order field equations

Dh(2)
αβ = Tαβ [hµν ]
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Gravitational Self-Force (GSF)

Naive approach: fictitious force
• Full spacetime metric given by gµν = gµν + hµν
• Self-force just fictitious “gravitational force” from describing motion with respect to

background metric ggg instead of full metric g

D′uα

dτ ′
= 0 on g =⇒ Duα

dτ
= F

α
grav on ggg

F
α
grav =

Duα

dτ
− D′uα

dτ ′

= −µ
2

(g
αβ

+ u
α
u
β

)(2∇νhνβ −∇βhµν)u
µ
u
ν

+O(ε
3
)

F
α
grav ≡ µ∇

αµν
hµν

• Force diverges along particle’s trajectory =⇒ Fαself 6= Fαgrav

A cautionary tale – BHPT and the point-particle limit

F
α
self ≡ µ∇

αµν
h

(tail/R)
µν
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Tail/Regular Field

Consider a scalar field Φ (e.g. electric scalar potential E&M)
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⇒ geodesic motion on gµν + h(R)
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Scalar Self-Force (SSF)

FαGSF ≡ q∇αβγhR
βγ

FαSSF ≡ q∇αΦR

µuβ∇βuα = FαGSF → uβ∇β(µuα) = FαSSF

uαFGSF
α = 0 → uαFSSF

α = − dµdτ

Recall definition of GSF:

Definition for SSF:

Equations of motion:

In practice, we calculate the physical, retarded field Φret

=⇒ regularization scheme

How to subtract two “infinities”?

F
self
α = q∇αΦ

R

= q∇α(Φ
ret − Φ

S
)

= F
ret
α − FS

α
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Background Geodesics on Kerr

Line element for Kerr metric in Boyer-Lindquist coordinates (t, r, θ, ϕ)

ds
2

= −
(

1− 2Mr

Σ

)
dt

2− 4Mar sin2 θ

Σ
dtdϕ+

Σ

∆
dr

2
+Σdθ

2
+

(
r
2

+ a
2

+
2Ma2r sin2 θ

Σ

)
sin

2
θdϕ

2

Σ ≡ r2
+ a

2
cos

2
θ ∆ ≡ r2

+ 2Mr − a2
a ≡ black hole spin

Decouple equations by defining Mino time: dλ = Σ−1dτ

Given mass of Kerr BH M and its spin a, specify bound orbit with

semi-latus rectum p, eccentricity e, and inclination ι

rmax = pM
1−e & rmin = pM

1+e

{p, e, ι} → {E,Lz, Q}
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1−e & rmin = pM

1+e

{p, e, ι} → {E,Lz, Q}
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Computational problem at the turning points rmin & rmax

⇒ parameterize rp and θp

rp(ψ) =
pM
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2
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≡ P (θ)
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Spectral Orbit Integration (SOI)

Spectral orbit integration (SOI) theory
• Originally developed by Hopper et al (2015) for

Schwarzschild

• Consider integrand P (r)(ψ): periodic, smooth, &

C∞

• Represent as Fourier series

• Coefficients fall off exponentially

⇒ truncate after N coefficients

• Truncated Fourier series is a bandlimited

function

• Nyquist-Shannon sampling theorem:

bandlimited function can be represented by

discrete samples

• Whittaker-Shannon interpolation reproduces

bandlimited function from samples

• Fourier series → DFT

• Integrals → discrete sums

• Exponential convergence of sums and series ⇒
low sampling even for calculations to 200 digits

• Number of samples scales with accuracy goal
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Sample SOI Calculation

dλ(r)

dψ
= P

(r)
(ψ)

P
(r)

(ψ) =

∞∑
j=0

P(r)
j cos(j ψ)

ψi ≡
iπ

N − 1
i ∈ 0, 1, . . . , N − 1

P(r)
j ' 2

N − 1

[
1

2
P

(r)
(0) +

1

2
(−1)

j
P

(r)
(π) +

N−2∑
i=1

P
(r)

(ψi) cos (jψi)

]

P
(r)

(ψ) '
[

1

2
P(r)

0 +
1

2
P(r)
N−1 cos ((N − 1)ψ) +

N−2∑
j=1

P(r)
j cos (jψ)

]

λ
(r)

(ψ) '
[
ψ P̄(r)

0

2
+
P̄(r)
N−1

2(N − 1)
sin ((N − 1)ψ) +

N−2∑
j=1

P̄(r)
j

j
sin (jψ)

]

Period given by Λr = πP(r)
0

Frequency given by Υr = 2π/Λr
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Constructing the Scalar Field

Field equation due to scalar charge source

∇a∇αΦ
ret

= −4πσ σ(t, r, θ, ϕ) = q

∫
δ(x− z(τ))(−g)− 1

2 dτ

Use mode decomposition and separation of variables
• Decompose field and source in frequency domain, then on the basis of spheroidal harmonics

Sl̄mω(θ,−γ2)eimϕ

Φ(t, r, θ, ϕ) =
1√

r2 + a2

∑
l̄mkn

Xl̄mkn(r)Sl̄mkn(θ)e
imϕ

e
−iωmknt

σ(t, r, θ, ϕ) = − (a2 + r2)3/2

4πΣ∆

∑
l̄mkn

σ̃l̄mkn(r)Sl̄mkn(θ)e
imϕ

e
−iωmknt

=⇒
[
d2

dr2
∗

+ Ul̄mkn(r)

]
Xl̄mkn(r) = σ̃l̄mkn(r)

Solve the homogeneous radial equation w/ solutions X±
l̄mkn



MST Formalism

Compute X±
l̂mkn

using Mano-Suzuki-Takasugi (MST) function expansion

formalism

• Limit ω → 0, horizon solutions → hypergeometric functions

outer solutions → Coulomb wave functions

• Expand radial solutions into series of these functions

X
±

(r) ∼ f(r)
∑
n

a
ν
npn+ν(r)

• Solving ODE for Xl̂mkn → solving algebraic equation for ν

Advantages
• Not as limited by machine precision as typical ODE solvers (e.g. Runge-Kutta)

• Nearly-analytic method

Disadvantages
• At high frequencies ν becomes imaginary

• At high frequencies, large cancellations in function summation ⇒ large precision loss
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